Study finds nickelate superconductors are intrinsically magnetic

2022-08-19 22:18:14 By : Ms. Anna Su

Click here to sign in with or

by Glennda Chui, SLAC National Accelerator Laboratory

Electrons find each other repulsive. Nothing personal—it's just that their negative charges repel each other. So getting them to pair up and travel together, like they do in superconducting materials, requires a little nudge.

In old-school superconductors, which were discovered in 1911 and conduct electric current with no resistance, but only at extremely cold temperatures, the nudge comes from vibrations in the material's atomic lattice.

But in newer, "unconventional" superconductors—which are especially exciting because of their potential to operate at close to room temperature for things like zero-loss power transmission—no one knows for sure what the nudge is, although researchers think it might involve stripes of electric charge, waves of flip-flopping electron spins that create magnetic excitations, or some combination of things.

In the hope of learning more by looking at the problem from a slightly different angle, researchers at Stanford University and the Department of Energy's SLAC National Accelerator Laboratory synthesized another unconventional superconductor family—the nickel oxides, or nickelates. Since then, they've spent three years investigating the nickelates' properties and comparing them to one of the most famous unconventional superconductors, the copper oxides or cuprates.

And in a paper published in Nature Physics today, the team reported a significant difference: Unlike in the cuprates, the magnetic fields in nickelates are always on.

Nickelates, the scientists said, are intrinsically magnetic, as if each nickel atom were clutching a tiny magnet. This is true whether the nickelate is in its non-superconducting, or normal, state or in a superconducting state where electrons have paired up and formed a sort of quantum soup that can host intertwining phases of quantum matter. Cuprates, on the other hand, are not magnetic in their superconducting state.

"This study looked at fundamental properties of the nickelates compared to the cuprates, and what that can tell us about unconventional superconductors in general," said Jennifer Fowlie, a postdoctoral researcher at SLAC's Stanford Institute for Materials and Energy Sciences (SIMES) who led the experiments.

Some researchers think magnetism and superconductivity compete with each other in this type of system, she said; others think you can't have superconductivity unless magnetism is close by.

"While our results don't settle that question, they do highlight where more work should probably be done," Fowlie said. "And they mark the first time that magnetism has been examined in both the superconducting and the normal state of nickelates."

Harold Hwang, a professor at SLAC and Stanford and director of SIMES, said, "This is another important piece of the puzzle that the research community is putting together as we work to frame the properties and phenomena at the heart of these exciting materials."

Few things come easy in this field of research, and studying the nickelates has been harder than most.

While theorists predicted more than 20 years ago that their chemical similarity to the cuprates made it likely that they could host superconductivity, nickelates are so difficult to make that it took years of trying before the SLAC and Stanford team succeeded.

Even then, they could only make thin films of the material—not the thicker chunks needed to explore its properties with common techniques. A number of research groups around the world have been working on easier ways to synthesize nickelates in any form, Hwang said.

So the research team turned to a more exotic method, called low-energy muon spin rotation/relaxation, that can measure the magnetic properties of thin films and is available only at the Paul Scherrer Institute (PSI) in Switzerland.

Muons are fundamental charged particles that are similar to electrons, but 207 times more massive. They stick around for just 2.2 millionths of a second before decaying. Positively charged muons, which are often preferred for experiments like these, decay into a positron, a neutrino and an antineutrino. Like their electron cousins, they spin like tops and change the direction of their spin in response to magnetic fields. But they can "feel" those fields only in their immediate surroundings—up to about one nanometer, or a billionth of a meter, away.

At PSI, scientists use a beam of muons to embed the little particles in the material they want to study. When the muons decay, the positrons they produce fly off in the direction the muon is spinning. By tracing the positrons back to their origins, researchers can see which way the muons were pointing when they winked out of existence and thus determine the material's overall magnetic properties.

The SLAC team applied to do experiments with the PSI system in 2020, but then the pandemic made it impossible to travel in or out of Switzerland. Fortunately, Fowlie was a postdoc at the University of Geneva at the time and already planning to come to SLAC to work in Hwang's group. So she started the first round of experiments in Switzerland with a team led by Andreas Suter, a senior scientist at PSI and an expert in extracting information about superconductivity and magnetism from muon decay data.

After arriving at SLAC May 2021, Fowlie immediately started making various types of nickelate compounds the team wanted to test in their second round of experiments. When travel restrictions ended, the team was finally able to go back to Switzerland to finish the study.

The unique experimental setup at PSI allows scientists to embed muons at precise depths in the nickelate materials. From this, they were able to determine what was going on in each super-thin layer of various nickelate compounds with slightly different chemical compositions. They discovered that only the layers that contained nickel atoms were magnetic.

Interest in the nickelates is very high around the world, Hwang said. Half a dozen research groups have published their own ways of synthesizing nickelates and are working on improving the quality of the samples they study, and a huge number of theorists are trying to come up with insights to guide the research in productive directions.

"We are trying to do what we can with the resources we have as a research community," he said, "but there's still a lot more we can learn and do." Explore further New leap in understanding nickel oxide superconductors More information: Jennifer Fowlie, Intrinsic magnetism in superconducting infinite-layer nickelates, Nature Physics (2022). DOI: 10.1038/s41567-022-01684-y. www.nature.com/articles/s41567-022-01684-y Journal information: Nature Physics

Provided by SLAC National Accelerator Laboratory Citation: Study finds nickelate superconductors are intrinsically magnetic (2022, August 1) retrieved 19 August 2022 from https://phys.org/news/2022-08-nickelate-superconductors-intrinsically-magnetic.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

More from Other Physics Topics

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

Medical research advances and health news

The latest engineering, electronics and technology advances

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.