Rare earth magnet uses less neodymium

2022-05-14 06:04:27 By : Ms. chris zhou

By Steve Bush 22nd April 2022

Grade 42M commercial magnet performance (see graph) can be achieved with ~30% less neodymium than before, according to the Korea Institute of Materials Science.

More of the less costly rare-earth cerium is the answer, but performing this substitution has been proving difficult.

“In order to develop a neodymium-reduced permanent magnet, the content of cerium has to be increased,” said KIMS. “Until now, with the increased content of cerium, it was not able to prevent the deterioration of the magnetic properties.”

Part of the reason is that Ce2Fe14B is simply not such a good magnet material as Nd2Fe14B – with 11.7kG and 26kOe for the cerium version against 16kG and 73kOe when neodymium is used.

But another reason is that, above 24% cerium according to the research team, paramagnetic (hardly magnetic) rare-earth-Fe particles form and disrupt the crystal structure desired for strong rare-earth-Fe-B magnets.

Using hot-deformation instead of sintering to form the final magnet shape was known to be part of the answer, as its fast cooling hindered the formation of rare-earth-Fe particles, but it did not deal with rare-earth-Fe particles that had already formed when the precursor powder was made by crystalline melt-spinning.

The critical step at KIMs, was to increase the spinning speed to accelerate cooling in this step too, producing amorphous precursor powder from the same feed material.

The result was no rare-earth-Fe particles in the powder, which was then hot-deformed into the final magnet shape to avoid subsequent rare-earth-Fe particle formation.

The researchers, led by Jung-Goo Lee and Tae-Hoon Kim, “succeeded in optimising the microstructure of the magnet by suppressing the formation of unnecessary magnetic particles”, said KIMS. “In addition, they were able to simultaneously improve the residual magnetism and coercive force, which are the main properties of permanent magnets. As residual magnetism and coercive force are in a trade-off relationship, technology that improves both is very useful.”

The work is covered in ‘High-performance Ce-substituted (Nd0.7Ce0.3)-Fe-B hot-deformed magnets fabricated from amorphous melt-spun powders‘, published in Scripta Materialia – full paper can be read without payment.

Tagged with: Homepage Featured Articles Korea Magnet rare-earth

Your email address will not be published. Required fields are marked *

Get our news, blogs and comments straight to your inbox! Sign up for the Electronics Weekly newsletters: Mannerisms, Gadget Master and the Daily and Weekly roundups.

Read our special supplement celebrating 60 years of Electronics Weekly and looking ahead to the future of the industry.

Read the Electronics Weekly @ 60 supplement »

Read the first ever Electronics Weekly online: 7th September 1960. We've scanned the very first edition so you can enjoy it.

Read the very first edition »

Electronics Weekly teams up with RS Grass Roots to highlight the brightest young electronic engineers in the UK today.

Read our special supplement celebrating 60 years of Electronics Weekly and looking ahead to the future of the industry.

Read the Electronics Weekly @ 60 supplement »

Read the first ever Electronics Weekly online: 7th September 1960. We've scanned the very first edition so you can enjoy it.

Read the very first edition »

Tune into this Xilinx interview: Responding to platform-based embedded design

Tune into this podcast to hear from Chetan Khona (Director Industrial, Vision, Healthcare & Sciences at Xilinx) about how Xilinx and the semiconductor industry is responding to customer demands.

By using this website you are consenting to the use of cookies. Electronics Weekly is owned by Metropolis International Group Limited, a member of the Metropolis Group; you can view our privacy and cookies policy here.