Click here to sign in with or
by Mariah Chuprinski, Pennsylvania State University
What do corncobs and tomato peels have to do with electronics? They both can be used to salvage valuable rare earth elements, like neodymium, from electronic waste. Penn State researchers used micro- and nanoparticles created from the organic materials to capture rare earth elements from aqueous solutions.
Their findings, available online now, will also be published in the November issue of the Chemical Engineering Journal.
"Waste products like corncobs, wood pulp, cotton and tomato peels often end up in landfills or in compost," said corresponding author Amir Sheikhi, assistant professor of chemical engineering. "We wanted to transform these waste products into micro- or nanoscale particles capable of extracting rare earth elements from electronic waste."
Rare earth metals are used to manufacture strong magnets used in motors for electric and hybrid cars, loudspeakers, headphones, computers, wind turbines, TV screens and more. However, mining these metals proves challenging and environmentally costly, according to Sheikhi, as large land areas are required to mine even small amounts of the metals. Instead, efforts have turned to recycling the metals from electronic waste items like old computers or circuit boards.
The challenge lies in efficiently separating the metals from refuse, Sheikhi said.
"Using the organic materials as a platform, we created highly functional micro- and nanoparticles that can attach to metals like neodymium and separate them from the fluid that surrounds them," Sheikhi said. "Via electrostatic interactions, the negatively-charged micro- and nano-scale materials bind to positively-charged neodymium ions, separating them."
To prepare the experiment, Sheikhi's team ground up tomato peel and corncob and cut wood pulp and cotton paper into small, thin pieces and soaked them in water. Then, they chemically reacted these materials in a controlled fashion to disintegrate them into three distinct fractions of functional materials: microproducts, nanoparticles and solubilized biopolymers. Adding the microproducts or nanoparticles to neodymium solutions triggered the separation process, resulting in the capture of neodymium samples.
In this most recent paper, Sheikhi improved upon the separation process demonstrated in previous work and extracted larger sample sizes of neodymium from less concentrated solutions.
Sheikhi plans to extend his separation mechanism into real-world scenarios and partner with interested industries to further test the process.
"In the near future, we want to test our process on realistic industrial samples," Sheikhi said.
"We also hope to tune the selectivity of the materials toward other rare earth elements and precious metals, like gold and silver, to be able to separate those from waste products as well." Explore further Salvaging rare earth elements from electronic waste More information: Mica L. Pitcher et al, Highly functional bio-based micro- and nano-structured materials for neodymium recovery, Chemical Engineering Journal (2022). DOI: 10.1016/j.cej.2022.137418 Provided by Pennsylvania State University Citation: Compost to computer: Bio-based materials used to salvage rare earth elements (2022, August 19) retrieved 19 August 2022 from https://phys.org/news/2022-08-compost-bio-based-materials-salvage-rare.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
More from Materials and Chemical Engineering
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.